Source code for galpak.mcmc

# coding=utf-8

from __future__ import division

import numpy as np, sys
from astropy.table import Table

from .galaxy_parameters import  GalaxyParameters
from .hyperspectral_cube import HyperspectralCube as HyperCube
from .math_utils import merge_where_nan, median_clip, safe_exp

[docs]class MCMC: """ An extension of the galpak class with the galpak MH algorithm (myMCMC class) and method used for emcee and external algorithm the following methods are for external samplers such as emcee: - lnprob: returned by __call__ / the full log-probability function: Ln = Priors x L(p) - loglike: the log L(p) - logpriors: the log priors with uniform priors. the following methods are for multinest: - pyloglike: the log L(p) - pycube: transforms unit cube to uniform priors. the following methods are for dynesty: - loglike: the log L(p) - ptforms: transforms unit cube to uniform priors. the following methods are for the internal galpak MH algorithm - myMCMC """ CHISTAT_VALID = ['gaussian', 'Mighell', 'Cstat', 'Neyman', 'Pearson'] SAMPLING_VALID = ['Cauchy', 'Normal', 'AdaptiveCauchy',\ 'DE', 'Snooker', 'walkers', 'walkersCauchy'] MCMC_VALID = ['galpak', 'emcee_MH', 'emcee_walkers', 'dynesty', 'multinest'] def __call__(self, x): """ call for instance () used for emcee """ return self.lnprob(x) #For EMCEE def lnprob(self, params): """ the full log-probability function: Ln = Priors x L(p) """ #convert ndarray to Parameter class {for emcee} if not isinstance(params, GalaxyParameters): if isinstance(params, np.ndarray): params = self.model.Parameters().from_ndarray(params) else: self.logger.error("Param is not ModelParameter nor a ndarray") lp = self.logpriors(params) if not np.isfinite(lp): return -np.inf return lp+self.loglike(params) def loglike(self, params): """ The log-likelihood function. log L ~ log Pi_i [1/Vi^0.5 exp(-0.5 (xi-m)^/Vi] log L ~ -0.5 * sum_i Vi - 0.5 sum_i (xi-m)^2/Vi """ #return -0.5*self.compute_chi(params) #adding a constant return -0.5*self.compute_chi(params) def logpriors(self, params): """ Define uniform prior. Make sure we're inside the preset boundaries use gaussian priors if provided :param params: :return: """ if params is None: self.logger.error("Param is None " ) in_boundaries = (params >= self.min_boundaries) * (params <= self.max_boundaries) if (in_boundaries==False).as_vector().any(): return -np.inf else: self.model.sanitize_parameters(params) if self.gprior_parameters is None : return 0.0 else: mu = self.gprior_parameters[0] sig= self.gprior_parameters[1] # Gprior = np.array(stats.norm.logpdf(params, loc=mu, scale=sig) * has_gaussian_prior) Gprior = np.array(-0.5 * (mu-params)**2/sig**2) return np.nansum(Gprior) #for PyMultinest def pyloglike(self, cube, ndim, nparams): """ wrap for pymultinest """ vect = [cube[i] for i in range(ndim)] params = self.model.Parameters().from_ndarray(vect) self.model.sanitize_parameters(params) return self.loglike(params) #return self.loglike(params) def pycube(self, cube, ndim, nparams): """ Transforms samples `u` drawn from the unit cube to samples to those from our uniform prior for pymultinest """ if self.gprior_parameters is not None: mu = self.gprior_parameters[0] sig = self.gprior_parameters[1] has_gaussian_prior = np.isfinite(mu) else: has_gaussian_prior = np.ones_like(self.initial_parameters)==0 for i in range(ndim): if has_gaussian_prior[i]: #cube[i] = stats.norm(loc=mu[i], scale=sig[i]).ppf(cube[i]) cube[i] = Phi_ppf(cube[i], loc=mu[i], scale=sig[i]) else: cube[i] = (self.max_boundaries - self.min_boundaries)[i] * cube[i] + self.min_boundaries[i] #for ultranest #For Dynesty def ptform(self, u): """Transforms samples `u` drawn from the unit cube to samples to those from our uniform prior for Dynesty """ return (self.max_boundaries - self.min_boundaries) * u + self.min_boundaries def compute_chi(self, params): # Sanitize the parameters # if not isinstance(params, GalaxyParameters): if isinstance(params, np.ndarray): params = self.model.Parameters().from_ndarray(params) self.model.sanitize_parameters(params) # to deal with circularity #dim_d = np.size(self.cube.data) ones = self.cube**2/self.variance_cube # dim_d = np.isfinite(ones.data).sum() #count only data with finite values dim_p_free = dim_p = len(params) #already taken care #if self.model.flux_profile is not 'sersic': # dim_p_free = dim_p -1 if self.known_parameters is not None: fixed = np.where(np.isfinite(self.known_parameters),1,0).sum() else: _snr = self.galaxy.stdev / np.abs(self.galaxy) fixed = np.where(_snr<1e-6,1,0).sum() self.dim_p_free = dim_p_free - fixed self.Ndegree = (dim_d - self.dim_p_free -1) return self.chisq(self.chi_stat)(params) def chisq(self, chi_stat): # Chi2 satistics, default if (chi_stat == 'gaussian'): compute_chi_fct = lambda g: \ np.nansum(self._compute_error_gauss(g) ) # https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSappendixStatistics.html # Mighell http://adsabs.harvard.edu/abs/1999ApJ...518..380M # Humphrey 2009, http://adsabs.harvard.edu/abs/2009ApJ...693..822H # Mighell elif (chi_stat == 'Mighell'): compute_chi_fct = lambda g: \ np.nansum(self._compute_error_Mighell(g) ) # C-statistique elif (chi_stat == 'Cstat'): compute_chi_fct = lambda g: \ np.nansum(self._compute_error_cstat(g) ) # Neyman elif (chi_stat == 'Neyman'): compute_chi_fct = lambda g: \ np.nansum(self._compute_error_Neyman(g) ) # Pearson elif (chi_stat == 'Pearson'): compute_chi_fct = lambda g: \ np.nansum(self._compute_error_Pearson(g) ) else: raise Exception("chi_stat is not Valid, should be %s" %(str(self.CHISTAT_VALID))) #returns function return compute_chi_fct def myMCMC(self, max_iterations, random_amplitude, sampling_method='Cauchy', min_acceptance_rate=10 ): """ :param max_iterations: :param random_amplitude: :param sampling_method: 'Cauchy' [default] | 'Normal' | 'AdaptiveCauchy' :param min_acceptance_rate: float [defailt = 5] In %, the acceptance rate is the number of useful iterations divided by the total number of iterations. If it gets below the `failure_rate` treshold, iterations stop. :return: """ self.logger.info("Random amplitude : %s", str(random_amplitude)) # Some useful vars count_alpha_ok = 0 count_min = 0 total_iterations = 0 ki_min = sys.maxsize # that way, it can only go down galaxy = self.initial_parameters galaxy_old = galaxy.copy() galaxy_new = galaxy_old.copy() #chi_old = self.compute_chi(galaxy) lnprob_old = self.lnprob(galaxy) self.logger.critical("Running GalPak MHSampler with Sampling %s" % (sampling_method)) names_param = list(galaxy.names) names_param.append('reduced_chi') # names_param = [ # 'x', 'y', 'z', 'flux', 'radius', 'inclination', 'pa', # 'turnover_radius', 'maximum_velocity', 'velocity_dispersion', # 'reduced_chi', # ] # types_param = ['float32' for i in range(dim_p + 1)] #dt = zip(names_param, types_param) #chain = np.zeros(max_iterations, dtype=dt) # intensive operation ! # chain = Table(names=names_param,dtype=types_param) self.chain_rows = [] rate = 100. while (rate > min_acceptance_rate) and (count_alpha_ok < max_iterations): # Update loop conditions total_iterations += 1 # Cauchy jumping galaxy_new = self._sampling_method(sampling_method, galaxy_old, random_amplitude) #new way: from emceee #newlnprob = self.lnprob(galaxy_new) #diff = 0.5 * (newlnprob - lnprob) #if diff < 0: # diff = np.exp(diff) - np.random.rand() #if diff > 0: # lnprob = newlnprob # galaxy = galaxy_new # Make sure we're inside the preset boundaries in_boundaries = (galaxy_new >= self.min_boundaries) * (galaxy_new <= self.max_boundaries) if in_boundaries.all(): # Computing convolved model with new parameters chi_new = self.compute_chi(galaxy_new) if chi_new<1e-3: #print chi_new,galaxy_new self.logger.error('Chi2 is 0, quit') exit() lnprob_new = self.lnprob(galaxy_new) # Compute ratio of likelihood a posteriori # exp( old-new / 2 ) #likelihood = safe_exp(-0.5 * (chi_new - chi_old) ) likelihood = safe_exp(lnprob_new - lnprob_old) # likelihood > 1 => new is better # likelihood < 1 => accept or reject alpha = np.random.rand() # Conservation test if alpha < likelihood: count_alpha_ok += 1 rate = count_alpha_ok * 100. / total_iterations # Save minimum if ki_min > chi_new: ki_min = chi_new count_min = count_alpha_ok galaxy_old = galaxy_new #chi_old = chi_new lnprob_old = lnprob_new # vect = np.append(galaxy_new, chi_new / self.Ndegree) #chain[count_alpha_ok - 1] = np.float32(vect) # chain.add_row(vect) self.chain_rows.append(list(galaxy_new) + [chi_new / self.Ndegree]) if self.verbose: # Check that parameters are not too close to the boundaries too_close_to_max = np.abs((galaxy_new - self.max_boundaries) / self.max_boundaries) < self.eps too_close_to_min = np.abs((galaxy_new - self.min_boundaries) / self.min_boundaries) < self.eps too_close_to_boundaries = too_close_to_min + too_close_to_max # info = "{count:5d} MIN={count_min:5d} {rate:2.0f}% " \ "χ²={ki:3.6f}>{ki_min:3.6f} {params:s}" info = info.format( count=count_alpha_ok, count_min=count_min, ki=chi_new / self.Ndegree, ki_min=ki_min / self.Ndegree, rate=rate, params=galaxy_new.colored_info(too_close_to_boundaries) ) if self.model.redshift is not None: mdyn = self.model.compute_Mdyn_at_Rhalf(galaxy_new) info += "log_mdyn={mass:.2f} " info = info.format(mass=np.log10(mdyn)) info += "lnlog={lnlog:6.4f} " info = info.format(lnlog=self.loglike(galaxy_new)) print(info) if len(self.chain_rows)>0: chain = Table(names=names_param, rows=self.chain_rows) else: raise Exception("No useful iterations") # Raise if no useful iteration was run if rate == 0.: self.logger.debug("Last Galaxy Parameters : %s", galaxy_new) raise RuntimeError("No useful iteration was run. " "Try with higher max_iterations?") # Report self.logger.info("Iterations report : %d Total, %d OK, %d%% Rate", total_iterations, count_alpha_ok, rate) self.logger.info("Storing results as parameters...") # Acceptance Rate self.acceptance_rate = rate self.logger.info("self.acceptance_rate : useful iterations count / total iterations count : %s " % (self.acceptance_rate) ) return chain #PRIVATE METHODS def _sampling_method(self, sampling, params, scale): """ set proposal distribution with sampling sampling: 'Cauchy' [default] | 'Normal' Cauchy: Lorentz proposal Normal: Gaussian proposal """ if sampling == 'Cauchy': random_uniforms = np.random.uniform(-np.pi / 2., np.pi / 2., size=len(params)) galaxy_new = params + scale * np.tan(random_uniforms) elif sampling == 'Normal': galaxy_new = np.random.normal(params, scale, size=len(params)) elif sampling == 'AdaptiveCauchy': random_uniforms = np.random.uniform(-np.pi / 2., np.pi / 2., size=len(params)) #@fixme should be covariance if len(self.chain_rows) > 2500: scale = np.sqrt(np.std(np.array(self.chain_rows)[-1500:, :-1], axis=0)) ** 2 / len(params) elif len(self.chain_rows)>1500: scale = np.sqrt(np.std(np.array(self.chain_rows)[-750:,:-1], axis=0) )**2 / len(params) elif len(self.chain_rows) > 500: scale = np.sqrt(np.std(np.array(self.chain_rows)[-250:, :-1], axis=0) * 0.8 ) ** 2 / len(params) elif len(self.chain_rows) > 50: scale = np.sqrt(np.std(np.array(self.chain_rows)[-50:, :-1], axis=0) * 0.5) ** 2 / len(params) galaxy_new = params + scale * np.tan(random_uniforms) else: raise Exception("Not implemented. Should be %s" %(self.SAMPLING_VALID)) return galaxy_new def _init_sampling_scale(self, random_scale, should_guess_flags): dim_d = np.size(self.cube.data) dim_p = len(self.galaxy) # Tweak the random amplitude vector (Kp coeff, as pid) # that we can document Model.setup_random_amplitude() adequately random_amplitude = np.sqrt( (self.min_boundaries - self.max_boundaries) ** 2 / 12. ) * dim_p / dim_d # Let the model adjust the random amplitude of the parameter jump self.model.setup_random_amplitude(random_amplitude) # Scale MCMC if needed // allowing vectors if random_scale is not None: if np.size(random_scale) != 1: merge_where_nan(random_scale, np.ones_like(random_amplitude)) random_amplitude = random_amplitude * random_scale # Zero random amplitude where parameters are known random_amplitude = random_amplitude * should_guess_flags return random_amplitude def _compute_error_gauss(self, galaxy): """ It computes the difference between the measured cube and the computed cube from given galaxy parameters. returns ( D - M ) / stdev """ # Compute convolved cube for given galaxy parameters cube_convolved = self.create_convolved_cube(galaxy, self.cube.shape) # Diff. between measured cube and convolved cube, scaled by the error self.variance_chi = self.variance_cube difference = (self.cube - cube_convolved)**2 / self.variance_chi return np.ndarray.flatten(difference.data) def _compute_error_Mighell(self, galaxy): """ Modified Statistic Mighell 1998 Sum ( D + min(1,D) - M)^2 / D + 1 """ # Compute convolved cube for given galaxy parameters cube_convolved = self.create_convolved_cube(galaxy, self.cube.shape) tmp_cube = HyperCube(np.where(self.cube.data >= 1, 1., self.cube.data)) self.variance_chi = self.cube + 1.0 difference = (self.cube + tmp_cube - cube_convolved ) **2 \ / self.variance_chi return np.ndarray.flatten(difference.data) def _compute_error_Neyman(self, galaxy): """ Modified Neyman statistic Humphrey 2009, http://adsabs.harvard.edu/abs/2009ApJ...693..822H Sum ( M - D )^2 / max(D,1) """ # Compute convolved cube for given galaxy parameters cube_convolved = self.create_convolved_cube(galaxy, self.cube.shape) self.variance_chi = HyperCube(np.where(self.cube.data <= 1, 1., self.cube.data)) difference = (cube_convolved - self.cube)**2 / self.variance_chi return np.ndarray.flatten(difference.data) def _compute_error_Pearson(self, galaxy): """ Pearson statistic Humphrey 2009, http://adsabs.harvard.edu/abs/2009ApJ...693..822H Sum ( M - D )^2 / M """ # Compute convolved cube for given galaxy parameters cube_convolved = self.create_convolved_cube(galaxy, self.cube.shape) difference = (cube_convolved - self.cube)**2 / (cube_convolved) self.variance_chi = cube_convolved return np.ndarray.flatten(difference.data) def _compute_error_cstat(self, galaxy): """ Cash statistique for Poisson noise Humphrey 2009, http://adsabs.harvard.edu/abs/2009ApJ...693..822H Sum ( M - D + D * log(D/M) ) """ # Compute convolved cube for given galaxy parameters cube_convolved = self.create_convolved_cube(galaxy, self.cube.shape) tmp_cube = np.log(self.cube.data/cube_convolved) difference = (cube_convolved - self.cube) + self.cube * tmp_cube self.variance_chi = np.ones_like(self.cube.data) return np.ndarray.flatten(difference.data)
######################### ######EMCEE 3.0 ######################## try: from emcee.moves import MHMove class CauchyMove(MHMove): """A Metropolis step with a Gaussian proposal function. Args: cov: The covariance of the proposal function. This can be a scalar, vector, or matrix and the proposal will be assumed isotropic, axis-aligned, or general respectively. mode (Optional): Select the method used for updating parameters. This can be one of ``"vector"``, ``"random"``, or ``"sequential"``. The ``"vector"`` mode updates all dimensions simultaneously, ``"random"`` randomly selects a dimension and only updates that one, and ``"sequential"`` loops over dimensions and updates each one in turn. factor (Optional[float]): If provided the proposal will be made with a standard deviation uniformly selected from the range ``exp(U(-log(factor), log(factor))) * cov``. This is invalid for the ``"vector"`` mode. Raises: ValueError: If the proposal dimensions are invalid or if any of any of the other arguments are inconsistent. """ def __init__(self, cov, mode="vector", factor=None): # Parse the proposal type. try: float(cov) except TypeError: cov = np.atleast_1d(cov) if len(cov.shape) == 1: # A diagonal proposal was given. ndim = len(cov) proposal = _diagonal_proposal(np.sqrt(cov), factor, mode) elif len(cov.shape) == 2 and cov.shape[0] == cov.shape[1]: # The full, square covariance matrix was given. ndim = cov.shape[0] proposal = _proposal(cov, factor, mode) else: raise ValueError("Invalid proposal scale dimensions") else: # This was a scalar proposal. ndim = None proposal = _isotropic_proposal(np.sqrt(cov), factor, mode) super(CauchyMove, self).__init__(proposal, ndim=ndim) class _isotropic_proposal(object): allowed_modes = ["vector", "random", "sequential"] def __init__(self, scale, factor, mode): self.index = 0 self.scale = scale if factor is None: self._log_factor = None else: if factor < 1.0: raise ValueError("'factor' must be >= 1.0") self._log_factor = np.log(factor) if mode not in self.allowed_modes: raise ValueError(("'{0}' is not a recognized mode. " "Please select from: {1}") .format(mode, self.allowed_modes)) self.mode = mode def get_factor(self, rng): if self._log_factor is None: return 1.0 return np.exp(rng.uniform(-self._log_factor, self._log_factor)) def get_updated_vector(self, rng, x0): return x0 + self.get_factor(rng) * self.scale * rng.randn(*(x0.shape)) def __call__(self, x0, rng): nw, nd = x0.shape xnew = self.get_updated_vector(rng, x0) if self.mode == "random": m = (range(nw), rng.randint(x0.shape[-1], size=nw)) elif self.mode == "sequential": m = (range(nw), self.index % nd + np.zeros(nw, dtype=int)) self.index = (self.index + 1) % nd else: return xnew, np.zeros(nw) x = np.array(x0) x[m] = xnew[m] return x, np.zeros(nw) class _diagonal_proposal(_isotropic_proposal): def get_updated_vector(self, rng, x0): random_uniforms = np.random.uniform(-np.pi / 2., np.pi / 2., size=len(self.scale)) return x0 + self.get_factor(rng) * self.scale * np.tan(random_uniforms) #return x0 + self.get_factor(rng) * self.scale * rng.randn(*(x0.shape)) class _proposal(_isotropic_proposal): allowed_modes = ["vector"] def get_updated_vector(self, rng, x0): random_uniforms = np.random.uniform(-np.pi / 2., np.pi / 2., size=len(self.scale)) return x0 + self.get_factor(rng) * self.scale * np.tan(random_uniforms) #return x0 + self.get_factor(rng) * rng.multivariate_normal( # np.zeros(len(self.scale)), self.scale) except: pass