Source code for galpak.galpak3d

# -*- coding: utf-8 -*-

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from distutils.version import LooseVersion, StrictVersion
import importlib

import os,re
import sys
from copy import deepcopy
import configparser

from astropy.io.fits import Header
import astropy.io.ascii as asciitable
from astropy.table import Table, Column

import math
import numpy as np
np.random.seed(seed=1234)

# LOCAL IMPORTS
from .__version__ import __version__
from .math_utils import merge_where_nan, median_clip, safe_exp

from .instruments import *
from .hyperspectral_cube import HyperspectralCube as HyperCube
from .string_stdout import StringStdOut

from .model_class import Model
from .model_sersic3d import ModelSersic
from .galaxy_parameters import GalaxyParameters, GalaxyParametersError
from .plot_utilities import Plots
from .mcmc import MCMC
from .galpak3d_utils import _save_to_file,_read_file, _read_instrument, _read_model

#will be removed
DiskModel = ModelSersic #for backward compatibility
DefaultModel = ModelSersic

OII = {'wave': [3726.2, 3728.9], 'ratio':[0.8,1.0]}

# LOGGING CONFIGURATION
import logging
logging.basicConfig(level=logging.INFO)



# OPTIONAL IMPORTS
try:
    import bottleneck as bn
except ImportError:
    logging.info(" bottleneck (optional) not installed, performances will be degraded")
    import numpy as bn
try:
    import pyfftw
except ImportError:
    logging.info(" PyFFTW (optional) not installed, performances will be degraded")
try:
    import mpdaf
    logging.info("Found MPDAF version %s" % (mpdaf.__version__))
    mpdaf_there=True
except ImportError:
    mpdaf_there=False
    logging.warning(" MPDAF (optional) not installed / not required")
try:
    import emcee
    emcee_there=True
    logging.info("Found EMCEE version %s" % (emcee.__version__))
    logging.warning("EMCEE tested for version > 3.0")
except ImportError:
    emcee_there=False
    logging.warning(" EMCEE (optional) not installed / not required. So option use_emcee is disabled")
try:
    import dynesty
    dynesty_there=True
    logging.info("Found Dynesty version %s \n EXPERIMENTAL and UNSUPPORTED" % (dynesty.__version__))
except ImportError:
    dynesty_there=False
    logging.warning(" Dynesty (optional) not installed / not required. ")
try:
    import pymultinest
    multinest_there=True
    logging.info("Found PyMultinest version %s" % (importlib.metadata.version("pymultinest")))
except ImportError:
    multinest_there=False
    logging.warning(" PyMultinest (optional) not installed / not required. ")

try:
    import corner
except ImportError:
    logging.info("corner (optional) not installed, corner plots will be disabled")

#Python3 compatibility
try:
  basestring
except NameError:
  basestring = str

if sys.version>=LooseVersion('2.7') and sys.version<LooseVersion('3.5'):
    try:
        reload  # Python 2.7
    except NameError:
        try:
            from importlib import reload  # Python 3.4+
        except ImportError:
            from imp import reload  # Python 3.0 - 3.3

    reload(sys)
    sys.setdefaultencoding('utf-8')


[docs]class GalPaK3D(Plots, MCMC): """ GalPaK3D is a tool to extract Galaxy Parameters and Kinematics from 3-Dimensional data, using reverse deconvolution with Bayesian analysis Markov Chain Monte Carlo. (random walk) cube: HyperspectralCube|string The actual data on which we'll work ; it should contain only one galaxy. Can be a HyperspectralCube object, a string filename to a FITS file, or even MPDAF's ``mpdaf.obj.Cube``. seeing: float Aka the Point Spread Function's Full Width Half Maximum. This convenience parameter, when provided, will override the FWHM value of the instrument's PSF. instrument: Instrument The instrument configuration to use when simulating convolution. The default is :class:`MUSE <galpak.MUSE>`. crval3: float A value for the cube's header's CRVAL3 when it is missing. You should update your cube's header. crpix3: float A value for the cube's header's CRPIX3 when it is missing. You should update your cube's header. cunit3: float A value for the cube's header's CUNIT3 when it is missing. You should update your cube's header. cdelt3: float A value for the cube's header's CDELT3 when it is missing. You should update your cube's header. cunit1: float A value for the cube's header's CUNIT1 (&2) when it is missing. You should update your cube's header. force_header_update: bool Set to True to force the update of the above header cards, when their values are not missing. Note: These will not be saved into the FITS file. (if the cube is one) """ logger = logging.getLogger('GalPaK') logger.info(' Running galpak ' + __version__) def __init__(self, cube, variance=None, model=None, seeing=None, instrument=None, quiet=False, crval3=None, crpix3=None, cunit3=None, cdelt3=None, ctype3=None, cunit1=None, force_header_update=False): # DEVS : If you change the signature above, # remember to update the run() in api.py # Prepare output attributes self.acceptance_rate = 100. self.galaxy = GalaxyParameters() self.stdev = GalaxyParameters() self.chain = None self.sub_chain = None self.psf3d = None self.convolved_cube = None self.deconvolved_cube = None self.residuals_cube = None self.residuals_map = None self.variance_cube = None #true intrinsic maps self.true_flux_map = None self.true_velocity_map = None self.true_disp_map = None self.error_maps = False self.true_flux_map_error = None self.true_velocity_map_error = None self.true_disp_map_error = None #observed maps self.obs_flux_map = None self.obs_velocity_map = None self.obs_disp_map = None self.max_iterations = None self.method = None self.chain_fraction = None self.percentile = None self.initial_parameters = None self.min_boundaries = None self.max_boundaries = None self.known_parameters = None self.random_scale = None self.reduce_chi = None self.chi_stat = 'gaussian' self.chi_at_p = None self.best_chisq = None self.stats = None self.BIC = None self.DIC = None self.mcmc_method = None self.mcmc_sampling = None #self.redshift = None # Assign the logger to a property for convenience, and set verbosity self.version = __version__ self.config = configparser.RawConfigParser() self.model = None if quiet: self._set_verbose(None) self.verbose=None else: self._set_verbose(True) # Set up the input data cube if isinstance(cube, basestring): self.logger.info('Reading cube from %s' % (cube)) cube = HyperCube.from_file(cube, verbose=not quiet) elif isinstance(cube, HyperCube): self.logger.info('Provided cube is a HyperSpectral Object') elif mpdaf_there: if isinstance(cube, mpdaf.obj.Cube): self.logger.info('Provided Cube is a mpdaf Cube object') cube = HyperCube.from_mpdaf(cube, verbose=not quiet) else: raise TypeError("Provided cube is not a HyperspectralCube " "nor mpdaf's Cube") else: raise TypeError("Provided cube is not a HyperspectralCube ") if cube.is_empty(): raise ValueError("Provided cube is empty") self.cube = cube if not self.cube.has_header(): self.logger.info("Reading hyperspectral cube without header. " "Creating a minimal one.") self.cube.header = Header() # GalPaK needs a sane Cube #self.cube.sanitize() # Set up the variance if variance is not None: self.logger.info('Using user-provided variance input') if isinstance(variance, basestring): self.logger.info("Read provided variance cube %s into HyperCube." % (variance)) variance_cube = HyperCube.from_file(variance) elif isinstance(variance, HyperCube): variance_cube = variance if variance_cube.data is None: self.logger.warning("Provided variance cube is empty.") else: self.logger.info("Saving variance into varianceCube") if variance_cube.filename == None: variance_cube.filename = 'Variance_cube_from_user' elif isinstance(variance, float): variance_cube = HyperCube(variance) variance_cube.filename = 'Variance_float_from_user={:.2e}'.format(variance) elif not (isinstance(variance, float) or isinstance(variance, HyperCube) or isinstance(variance, basestring)): raise TypeError("Provided variance is not a string nor HyperCube nor a float") else: variance_cube = HyperCube(self.cube.var, filename='Variance_from_cube_extension') # Set up the instrument's context if instrument is None: instrument = MUSE() self.logger.warning('Using the MUSE instrument per default. ' 'You should specify your own instrument.') if isinstance(instrument, basestring): #read config instrument = _read_instrument(instrument) #raise ValueError("Instrument needs to be an instance of " # "Instrument, not a string.") if not isinstance(instrument, Instrument): raise ValueError("Instrument needs to be an instance of Instrument") self.instrument = instrument ## Set default cube specs from instrument when missing from headers # as we don't want to rely on the input fits having properly set headers. # So, we aggregate in the cube our own specs (in " and µm) for our personal use : # - xy_step # - z_step # - z_central # 1. Patch up the HyperCube's missing values try: self.cube.patch( crval3=crval3, crpix3=crpix3, cunit3=cunit3, cdelt3=cdelt3, ctype3=ctype3, cunit1=cunit1, force=force_header_update ) except ValueError: raise ValueError("The cube already has one of the header cards " "you're trying to provide. " "Use force_header_update=True to override.") self.logger.debug('Header after patch : %s' % self.cube) #set xy_step z_step and z_central # 2. Set cube metadata from the the instrument if header is incomplete self.cube.defaults_from_instrument(instrument=instrument) # 3. Initialize steps xy_steps z_steps z_cunnit and z_central self.cube.initialize_self_cube() # 4. Calibrate the instrument with the cube self.instrument.use_pixelsize_from_cube(self.cube) self.logger.debug('z central : %4.e' % (self.cube.z_central) ) # Override the PSF FWHM (aka. seeing) if provided if seeing is not None and self.instrument.psf is not None: try: self.instrument.psf.fwhm = seeing except AttributeError: raise IOError("You provided a seeing but your instrument's PSF has no FWHM.") # Handle the variance, when provided, or generate one variance_data = variance_cube.data if variance_data is not None: self.logger.info("Replacing 0s in the variance cube by 1e12") variance_data = np.where(variance_data == 0.0, 1e12, variance_data) else: # Clip data, and collect standard deviation sigma self.logger.warning("No variance provided. Estimating Variance from edge statistics") clipped_data, clip_sigma, __ = median_clip(self.cube.data[:, 2:-4, 2:4], 2.5)#yband at x[2:4] self.logger.info("Computed stdev from the edges: sigma=%.e" % clip_sigma) # Adjust stdev margin if it is zero, as we'll divide with it later on if not np.isfinite(clip_sigma): clipped_data, clip_sigma, __ = median_clip(self.cube.data, 2.5) self.logger.info("reComputing stdev from the whole cube: sigma=%.e" % clip_sigma) if np.size(clip_sigma) == 1 and clip_sigma == 0: clip_sigma = 1e-20 variance_data = clip_sigma ** 2 *np.ones_like(self.cube.data) self.logger.info('Variance estimated is %s ' % (str(clip_sigma**2))) # Save the variance cube variance_cube.data = variance_data self.variance_cube = variance_cube # cube of sigma^2 self.error_cube = np.sqrt(self.variance_cube.data) # cube of sigmas # Provide the user with some feedback self.logger.info("Setting up with the following setup :\n%s" % self.instrument) # 5. Init model # Set up the model context # Set up the model context if isinstance(model, basestring)==True: model = _read_model(deepcopy(model)) if model is not None: self._init_model(model) self.logger.info("Setting up the model : %s" % (self.model.__name__())) self.logger.info("Model setup :\n%s" % (self.model) ) def _init_model(self, model): # Set up the simulation model if model is not None: self.model = model self.logger.info("Init boundaries from model '%s'" %(self.model.__name__())) self.model_dict = self.model.__dict__ #important: self.model.pixscale = self.cube.xy_step # Compute a flux estimation # fixme: add weighted sum with variance if present self.flux_est = bn.nansum(self.cube.data) if self.flux_est < 0: self.logger.warning( "WARNING: Initial flux (%4.2e) is <0 -- " "likely wrong, will recompute it ignoring <0 values" % self.flux_est ) self.flux_est = np.sum(np.where(self.cube.data > 0, self.cube.data, 0)) self.logger.warning('Initial flux is now %4.2e' % self.flux_est) self.logger.info('TIP: use `initial_parameters=` to set the flux') else: self.logger.info('Initial flux is %4.2e' % self.flux_est) # Default boundaries self.min_boundaries = self.model.min_boundaries(self) self.max_boundaries = self.model.max_boundaries(self) # Default initial parameters self.initial_parameters = (self.max_boundaries + self.min_boundaries) / 2. #set known parameters to ones self.known_parameters = self.model.Parameters()
[docs] def run_mcmc(self, max_iterations=15000, method_chain='last', last_chain_fraction=60, percentile=95, model=None, chi_stat='gaussian', mcmc_method='galpak', mcmc_sampling=None, min_boundaries=None, max_boundaries=None, known_parameters=None, initial_parameters=None, gprior_parameters=None, random_scale=None, min_acceptance_rate=10, verbose=True, emcee_nwalkers=30, **kwargs): # DEVS : If you change the signature above, # remember to update the run() in api.py """ Main method_chain of GalPak, computes and returns the galaxy parameters as a :class:`GalaxyParameters <galpak.GalaxyParameters>` object using reverse deconvolution with a MCMC. Also fills up the following attributes : - chain - psf3d - deconvolved_cube - convolved_cube - residuals_cube (Data-Model in units of sigma) - residuals_map (average of data-model in units of sigma or = 1/N_z. Sum_z Residuals_cube. sqrt(Nz) ) - acceptance_rate - galaxy (same object as returned value) with Vmax forced to be positive [and 180 added to PA] - stdev (also available as galaxy.stdev) - true_flux_map - true_velocity_map - true_disp_map Stops iteration if acceptance rate drops below ``min_acceptance_rate`` % or when ``max_iterations`` are reached. max_iterations: int Maximum number of useful iterations. method_chain: 'chi_sorted' | 'chi_min' | 'last' | 'MAP' Method used to determine the best parameters from the chain. - 'last' (default) : mean of the last_chain_fraction(%) last parameters of the chain - 'chi_sorted' : mean of the last_chain_fraction(%) best fit parameters of the chain - 'chi_min' : mean of last_chain_fraction(%) of the chain around the min chi - 'MAP': Parameters at Maximum At Posteriori, i.e. at chi_min last_chain_fraction: int Last Chain fraction (in %) used to compute the best parameters. Defaults to 60. model = DefaultModel() see class DiskModel or ModelSersic chi_stat: 'gaussian' [default] | 'Mighell' | 'Neyman' | 'Cstat' | 'Pearson' The chi2 statitics https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/XSappendixStatistics.html - 'gaussian' (default): Sum (D - M)^2 / e - 'Neyman' Sum (D - M )^2 / max(D,1) - 'Mighell' Sum (D + min(D,1) - M)^2 / (D+1) Mighell http://adsabs.harvard.edu/abs/1999ApJ...518..380M - 'Cstat' Sum ( M - D + D * log(D/M) ) Cash statistique Humphrey 2009, http://adsabs.harvard.edu/abs/2009ApJ...693..822H - 'Pearson' Sum ( M - D )^2 / M Pearson statistic Humphrey 2009, http://adsabs.harvard.edu/abs/2009ApJ...693..822H mcmc_method: 'galpak' [default] | 'emcee_walkers'| 'emcee_MH' | 'dynesty' | 'multinest' The MCMC method. - galpak: for the original MCMC algorithm using Cauchy proposal distribution - emcee_MH: emcee Metropolis Hasting - emcee_walkers: emcee multi-Walkers algorithms with Moves if version>=3.0 - dynesty: unsupported - multinest: using Importance Nested Sampling w/ pyMultinest - pymc3: to be implemented mcmc_sampling: None [default] | 'Cauchy' | 'AdaptiveCauchy' | 'Normal' | 'DE' | 'walkers' The sampling proposal distribution for MCMC_methods [galpak, emcee] - 'Cauchy' default when mcmc_method = 'galpak' or 'emcee_MH' requires tuning random_scale - 'AdaptiveCauchy' for mcmc_method = 'galpak [using last 500 or 750 iterations] - 'Normal' Gaussian sampling for 'galpak' or 'emcee_MH' - 'walkers' (=StretchMove) default when mcmc_method ='emcee_walkers' min_boundaries: ndarray|GalaxyParameters The galaxy parameters will never be less than these values. Will override the default minimum boundaries for the parameters. If any of these values are NaN, they will be replaced by the default ones. max_boundaries: ndarray|GalaxyParameters The galaxy parameters will never be more than these values. Will override the default minimum boundaries for the parameters. If any of these values are NaN, they will be replaced by the default ones. known_parameters: ndarray|GalaxyParameters All set parameters in this array will be skipped in the MCMC, the algorithm will not try to guess them. gprior_parameters: ndarray | [2x GalaxyParameters] Gaussian prior parameters the algorithm will not try to guess them. initial_parameters: ndarray|ModelParameters The initial galaxy parameters of the MCMC chain. If None, will use the inital parameters provided by the model. The galaxy parameters not initialized by the model or by this parameter will be set to the mean of the boundaries. random_scale: float Scale the amplitude of the MCMC sampling by these values. This is an important parameter to adjust for reasonable acceptance rate. The acceptance rate should be around 30-50%. If the acceptance rate is <20-30% (too low), decrease random_scale IF the acceptance rate is >50-60% (too high), increase random_scale verbose: boolean Set to True to output a detailed log of the process. The run is faster when this is left to False. """ # DEVS : If you change the signature above, # remember to update the run() in api.py #re initialize psf self.instrument.psf3d_fft = None # Save the parameters (the animation uses them) self.max_iterations = max_iterations self.method = method_chain self.chain_fraction = last_chain_fraction self.chi_stat = chi_stat self.percentile = percentile self.verbose = verbose #save intermediate model maps self.error_maps = None #will be set later self.chain_flux_map = [] self.chain_velocity_map = [] self.chain_dispersion_map = [] # Set up the simulation model if model is None: if self.model is not None: self.logger.warning("Model already specified: '%s'" % (self.model.__name__())) else: self.model = DefaultModel() self.logger.warning("Will use default model '%s'" %(self.model.__name__())) self.logger.info("Model setup :\n%s" % (self.model) ) elif model is not None: if isinstance(model, basestring): #read from config file self.model = _read_model(model) self.logger.info("Model set to %s from file: %s" % (self.model.__name__(), self.model) ) elif isinstance(model, Model): self.logger.warning("Model was already set") self.model = model self.logger.info("Model set to %s : %s" % (self.model.__name__(), self.model)) else: raise ValueError self._init_model(self.model) #For backwards compatibility: ## will be removed in the future #if self.model.line is None: # self.model.line = self.line #else: # self.line = self.model.line #save attribute #For backwards compatibility: ## will be removed in the future ## if not None, computes Mdyn(Re) #if self.model.redshift is not None: # self.redshift = self.model.redshift # Sanitize data and set arbitrary big stdev where NaNs are #cube_data = self.cube.data #cube_data = np.nan_to_num(cube_data) # Set verbosity self._set_verbose(verbose) dim_p = np.size(GalaxyParameters()) # In fraction of boundary space, an arbitrarily # small value for closeness to boundaries self.eps = 0.003 # Merge provided boundaries (if any) with default boundaries if isinstance(min_boundaries, basestring): min_boundaries = self._read_params(deepcopy(min_boundaries),'MIN') if isinstance(max_boundaries, basestring): max_boundaries = self._read_params(deepcopy(max_boundaries),'MAX') if min_boundaries is not None: min_boundaries = deepcopy(min_boundaries) merge_where_nan(min_boundaries, self.min_boundaries) #this returns a ndarray self.min_boundaries = GalaxyParameters().from_ndarray(min_boundaries) if max_boundaries is not None: max_boundaries = deepcopy(max_boundaries) merge_where_nan(max_boundaries, self.max_boundaries) #this returns a ndarray self.max_boundaries = GalaxyParameters().from_ndarray(max_boundaries) bug_boundaries = self.min_boundaries > self.max_boundaries if bug_boundaries.any(): self.logger.debug("Min Boundaries : %s", self.min_boundaries) self.logger.debug("Max Boundaries : %s", self.max_boundaries) raise ValueError("Boundaries are WRONG, because min > max") # Default initial parameters self.initial_parameters = self.model.initial_parameters(self) # Create initial galaxy parameters using mean and provided values mean_parameters = (self.max_boundaries + self.min_boundaries) / 2. #complete default values with mean parameters merge_where_nan(self.initial_parameters, mean_parameters) self.logger.info("Default Param_init : %s", self.initial_parameters) # read initial parameter from config file if isinstance(initial_parameters, basestring): initial_parameters = self._read_params(deepcopy(initial_parameters), 'INIT') # Merge provided initial parameters (if any) with the defaults if initial_parameters is not None: #complete input with default values template = self.model.Parameters() merge_where_nan(template, initial_parameters) merge_where_nan(template, self.initial_parameters) self.initial_parameters = template self.logger.info("Initial parameters : %s", self.initial_parameters) if gprior_parameters is not None: if isinstance(gprior_parameters, np.ndarray) and gprior_parameters.shape[0] !=2: self.logger.error("gprior parameter should be an array of shape 2xNparam ") if isinstance(gprior_parameters, list) and len(gprior_parameters)!=2: self.logger.error("gprior parameter should be a list of 2 Parameters ") template_mu = self.model.Parameters() template_sig= self.model.Parameters() merge_where_nan(template_mu, gprior_parameters[0]) merge_where_nan(template_sig, gprior_parameters[1]) gprior_parameters = np.array([template_mu, template_sig]) self.gprior_parameters = gprior_parameters # By default, try to guess all parameters should_guess_flags = np.ones(dim_p) # 0: we know it / 1: try to guess #if using input image # @fixme; this is unused if self.model_dict['flux_profile'] == 'user' and known_parameters is None: raise self.logger.error( "With an input image it is advised to freeze " "the `inclination`, using `known_parameters=`.") # Flag parameters that we manually specified and don't need to guess if isinstance(known_parameters, basestring): known_parameters = self._read_params(deepcopy(known_parameters), 'KNOWN') if known_parameters is not None: if len(known_parameters) != dim_p: raise ValueError("The `known_parameters=` must be an array of " "length %d, or even better an instance of `%s`" % (dim_p, self.model.parameters_class())) else: merge_where_nan(self.known_parameters, known_parameters) self.logger.info("Using known parameters: %s", self.known_parameters) # Freeze the known parameters by flagging them as not-to-guess for idx in range(dim_p): parameter = self.known_parameters[idx] if not math.isnan(parameter): should_guess_flags[idx] = 0 sign = math.copysign(1., parameter) self.min_boundaries[idx] = parameter * (1 - self.eps * sign) - self.eps self.max_boundaries[idx] = parameter * (1 + self.eps * sign) + self.eps self.initial_parameters[idx] = parameter # The setup is finished, let's dump some information self.logger.info("Min Boundary: %s", self.min_boundaries) self.logger.info("Max Boundary: %s", self.max_boundaries) # The setup is done, we can now start the MCMC loop. if isinstance(random_scale, basestring): random_scale = self._read_params(deepcopy(random_scale), 'RSCALE') self.random_scale = random_scale random_amplitude = self._init_sampling_scale(random_scale, should_guess_flags) # Zero random amplitude where parameters are known random_amplitude = random_amplitude * should_guess_flags self.random_amplitude = random_amplitude self.logger.info("Starting with χ² = %f", self.compute_chi(self.initial_parameters) / self.Ndegree) ## The actual MCMC ##################################################### #self.error_maps = save_error_maps #save intermediate model maps #set walkers if mcmc_method == 'galpak' and mcmc_sampling is None: mcmc_sampling = 'Cauchy' #if mcmc_method == 'emcee_MH' and mcmc_sampling is None: # mcmc_sampling = 'Cauchy' if mcmc_method == 'emcee_walkers' and mcmc_sampling is None: mcmc_sampling = 'walkers' self.mcmc_method = mcmc_method self.mcmc_sampling = mcmc_sampling #burnin = np.int(0.15*self.max_iterations) if mcmc_method == 'galpak': chain = self.myMCMC(max_iterations, random_amplitude, sampling_method=mcmc_sampling, min_acceptance_rate=min_acceptance_rate) elif mcmc_method == 'emcee_MH' and emcee_there: #DEFAULT EMCEE parameters for EnsembleSampler(EMCEE) pass elif mcmc_method == 'emcee_walkers' and emcee_there: #DEFAULT EMCEE parameters for EnsembleSampler(EMCEE) #kwargs_sampler = { # 'pool':None, \ # 'backend':None,\ # 'vectorize':False,\ # 'blobs_dtype':None,\ # 'postargs':None,\ # 'threads': 1, # } emcee_threads = 4 kwargs_emcee ={ 'store': True, \ 'tune': True, \ 'thin': 30 } #update default parameters kwargs_emcee.update(kwargs) #@fixme: need to accept parallelize pos0 = np.array([self.initial_parameters * (1+1e-3*np.random.randn(dim_p)) for i in range(emcee_nwalkers) ]) self.logger.critical("Running EMCEE with %d walkers on %d iterations" % (emcee_nwalkers, self.max_iterations)) if LooseVersion(emcee.__version__)<LooseVersion('3.0'): raise Exception("EMCEE version not supported ", emcee.__version__) #EMCE version3 if mcmc_sampling == 'Cauchy': from .mcmc import CauchyMove myMove=CauchyMove(self.random_amplitude.as_vector()**2) self.logger.critical("Running EMCEE Walkers with Cauchy Sampling") elif mcmc_sampling == 'Normal': from emcee.moves import GaussianMove myMove=GaussianMove(self.random_amplitude.as_vector()**2) self.logger.info("Random Ampl : %s", self.random_amplitude.as_vector()) self.logger.critical("Running EMCEE Walkers with Gaussian Sampling") elif mcmc_sampling == 'DE': from emcee.moves import DEMove myMove=DEMove() self.logger.critical("Running EMCEE Walkers with DE Sampling") elif mcmc_sampling == 'Snooker': from emcee.moves import DESnookerMove myMove=DESnookerMove() self.logger.critical("Running EMCEE Walkers with Snooker Sampling") elif mcmc_sampling == 'walkers': myMove = None #default StretchMove from EMCEE self.logger.critical("Running EMCEE Walkers with default Stretch Sampling") elif mcmc_sampling == 'walkersCauchy': from .mcmc import CauchyMove #50/50 StretchMove and CauchyMove myMove = [ (emcee.moves.StretchMove(),0.6), (CauchyMove(self.random_amplitude.as_vector()**2),0.4)] self.logger.critical("Running EMCEE Walkers with 60/40 StretchMove() & Cauchy Sampling") else: raise Exception("mcmc_sampling not valid. Options are ", self.SAMPLING_VALID) kwargs_emcee.update(kwargs) #Multiprocessing #try: # from multiprocessing import Pool # self.logger.info("Running EMCEE with multiprocessing") # with Pool() as pool: # self.sampler = emcee.EnsembleSampler(emcee_nwalkers, dim_p, self, moves=myMove, pool=pool) # if self.verbose is not True: # self.sampler.run_mcmc(pos0, self.max_iterations, progress=True, **kwargs_emcee) # else: # for state in self.sampler.sample(pos0, iterations=self.max_iterations, **kwargs_emcee): # for k, r in enumerate(state.coords): # print("%d %s log L=%f" % (self.sampler.iteration, self.model.Parameters().from_ndarray(r), \ # state.log_prob[k])) #except ImportError: self.logger.info(" Running EMCEE with 4 threads") self.sampler = emcee.EnsembleSampler(emcee_nwalkers, dim_p, self, moves=myMove, threads=4) if self.verbose is not True: self.sampler.run_mcmc(pos0, self.max_iterations, progress=True, **kwargs_emcee) else: for state in self.sampler.sample(pos0, iterations=self.max_iterations, **kwargs_emcee): for k,r in enumerate(state.coords): print("%d %s log L=%f" %(self.sampler.iteration, self.model.Parameters().from_ndarray(r),\ state.log_prob[k])) self.sampler.__dict__['kwargs'] = kwargs_emcee self.acceptance_rate = self.sampler.acceptance_fraction self.logger.info("EMCEE MH: Acceptance: %s " % (self.sampler.acceptance_fraction)) #self.logger.info("EMCEE MH: Naccepted states ", (self.sampler.naccepted)) #flat_chain = self.sampler.get_chain(discard=burnin, flat=True) chain_data = self.sampler.flatchain chain = Table(chain_data, names=self.model.Parameters().names) lnprob = self.sampler.flatlnprobability chain.add_column(Column(-2*lnprob / self.Ndegree), name='reduced_chi') #using dynesty elif mcmc_method == 'dynesty' and dynesty_there: # "Dynamic" nested sampling. # nlive = 500 self.sampler = dynesty.DynamicNestedSampler(self.loglike, self.ptform, dim_p \ , bound='single' #to force posterior weights , sample='unif' #unif/hscale ) kwargs_dynesty = {'nlive_init': 30 , 'nlive_batch': 200 } kwargs_dynesty.update(kwargs) self.logger.critical('EXPERIMENTAL Running Dynesty with ', kwargs_dynesty) self.sampler.run_nested(wt_kwargs={'pfrac': 0.9} #posterior based , maxiter = self.max_iterations , **kwargs_dynesty ) self.dresults = self.sampler.results chain_data = self.dresults.samples chain = Table(chain_data, names=self.galaxy.names) lnprob = self.dresults.logz chain.add_column(Column(-2*lnprob / self.Ndegree), name='reduced_chi') #using pymultinest elif mcmc_method == 'multinest' and multinest_there: """ run(LogLikelihood, Prior, n_dims, n_params=None, n_clustering_params=None, wrapped_params=None, importance_nested_sampling=True, multimodal=True, const_efficiency_mode=False, n_live_points=400, evidence_tolerance=0.5, sampling_efficiency=0.8, n_iter_before_update=100, null_log_evidence=-1e+90, max_modes=100, mode_tolerance=-1e+90, outputfiles_basename=u'chains/1-', seed=-1, verbose=False, resume=True, context=0, write_output=True, log_zero=-1e+100, max_iter=0, init_MPI=True, dump_callback=None) """ if 'outpath' not in kwargs.keys(): outpath = './pymulti' if os.path.isdir(outpath) is False: os.mkdir(outpath) output = outpath + '/out' else: outpath = kwargs['outpath'] if os.path.isdir(outpath) is False: os.mkdir(outpath) output = outpath + '/out' kwargs.pop('outpath') #default parameters kwargs_multi={'n_live_points': 200, \ 'evidence_tolerance':0.5, \ 'n_iter_before_update' : 200, \ 'const_efficiency_mode' : False, \ 'sampling_efficiency':0.8, \ 'resume' : False} kwargs_multi.update(kwargs) self.logger.critical("Running MultiNest with ", kwargs_multi) self.logger.info(" Multinest, ignoring max_iteration") pymultinest.run(self.pyloglike, self.pycube, n_dims= dim_p, \ max_iter=0, verbose=self.verbose, \ outputfiles_basename=output, **kwargs_multi) # create analyzer object #embedded in solve analyzer = pymultinest.Analyzer(dim_p, outputfiles_basename = output) # get a dictionary containing information about # the logZ and its errors # the individual modes and their parameters # quantiles of the parameter posteriors data = analyzer.get_data()[:,:-1] #print(data.shape) stats = analyzer.get_mode_stats() #lnZ = stats['evidence'] # iterate through the "posterior chain" #for params in a.get_equal_weighted_posterior(): # print(params) samples = analyzer.get_equal_weighted_posterior() #print(chain_data.shape) chain = Table(samples[:,:-1], names=self.galaxy.names) lnprob = samples[:,-1] chain.add_column(Column(-2*lnprob / self.Ndegree), name='reduced_chi') # get the best fit (highest likelihood) point #bestfit_params = stats['modes'][0]['mean'] #bestfit_params = stats['modes'][0]['maximum'] #bestfit_params = stats['modes'][0]['maximum a posterior'] #OR #bestfit_params = stats.get_best_fit()['parameters'] self.sampler = dict(samples = samples, stats=stats, \ kwargs=kwargs_multi ) #clean os.system('rm -rf {}/'.format(outpath)) elif mcmc_method == 'pymc3': raise NotImplementedError elif mcmc_method == 'pynuts': raise NotImplementedError else: raise Exception("method_mcmc %s not valid. Used of of %s" % (mcmc_method, self.MCMC_VALID)) # Store chain self.logger.info("self.chain : full Markov chain") #good_idx = np.where(chain['reduced_chi']!=0) #self.chain = Table(chain[good_idx]) # Sanitize the chain if vel <0 self.model.sanitize_chain(chain) self.chain = chain # Store PSF 3D, which may not be defined try: self.psf3d = HyperCube(self.instrument.psf3d) except AttributeError: pass # Extract Galaxy Parameters from chain, and store them self.logger.info("Extracting best parameters (medians) from chain") self.best_parameters_from_chain(method_chain, last_fraction=last_chain_fraction, percentile=percentile) # Create output cubes self.logger.info("self.convolved_cube : simulated convolved cube from found galaxy parameters") self.convolved_cube = self.create_convolved_cube(self.galaxy, self.cube.shape) self.convolved_cube.header = self.cube.header self.logger.info("self.deconvolved_cube : deconvolved cube from found galaxy parameters") self.deconvolved_cube = self.create_clean_cube(self.galaxy, self.cube.shape, final=True) self.deconvolved_cube.header = self.cube.header self.logger.info("self.residuals_cube : diff between actual data and convolved cube, scaled by stdev margin") self.residuals_cube = (self.cube - self.convolved_cube) / self.error_cube # * np.mean(variance_cube) self.residuals_cube.header = self.cube.header #compute observed maps #_ = self._make_moment_maps(self.convolved_cube, mask=True) # make moment maps with cube convolved with 3DPSF _ = self._make_maps_Epinat(self.convolved_cube, mask=True) # Average of residuals, normalized to sigma_mu nz = self.residuals_cube.shape[0] self.residuals_map = (self.residuals_cube.data.sum(0) / nz) * np.sqrt(nz) # Compute the χ² self.compute_stats() self.logger.info("χ² at best param: %f", self.chi_at_p) self.logger.info("Best min χ², %f ", self.best_chisq) self.logger.info("BIC (full) : %f ", self.BIC) self.logger.info("DIC : %f ", self.DIC) # Show a plot of the chain if verbose, to draw attention to the chain if verbose: # Sometimes, when the number of iterations is low, plotting fails. # It is a complex issue with matplotlib, so we're 'try'-wrapping it. try: self.plot_mcmc(adapt_range='5stdev') except: pass try: self.plot_geweke() except: pass return self.galaxy
def best_parameters_from_chain(self, method_chain='last', last_fraction=60, percentile=95): """ Computes best fit galaxy parameters from chain, using medians from a specified method_chain. method_chain: string 'last' | 'chi_sorted' | 'chi_min' | 'MAP' The method to use to extract the fittest parameters from the chain. 'last' (default) : mean of the last_fraction(%) last parameters of the chain 'chi_sorted' : mean of the last_fraction(%) best fit parameters of the chain 'chi_min' : mean of last_fraction(%) of the chain around the min chi 'MAP': Parameters at Maximum At Posteriori, i.e. at chi_min last_fraction: float % (60 as default) Fraction of the end of the chain used in determining the parameters. percentile: float % (95 as default) None: the method to use to compute the errors on the parameter is the standard deviation of the median float: the percentile (the 68th, or 95th percentile) to be used for the errors on the parameters #fixme: in which case returns the lower and upper values. Returns the galaxy parameters and the stdev """ self.method = method_chain self.chain_fraction = last_fraction self.percentile = percentile if self.chain is None: raise RuntimeError("No chain! Run .run_mcmc() first.") # Data correction for Vmax #vmax_sign = (self.chain['maximum_velocity'] < 0) #pa_correction = np.where(vmax_sign, self.chain['pa'] + 180., self.chain['pa']) #pa_correction = np.where(pa_correction > 180, pa_correction - 360, pa_correction) #self.chain['pa'] = pa_correction #self.chain['maximum_velocity'] = np.abs(self.chain['maximum_velocity']) cols = [ Column(data=np.cos(np.radians(self.chain['pa'])), name='cospa'), Column(data=np.cos(np.radians(self.chain['pa']*2)),name='cos2pa'), Column(data=np.sin(np.radians(self.chain['pa'])), name='sinpa'), Column(data=np.sin(np.radians(self.chain['pa']*2)),name='sin2pa') ] chain_full = self.chain.copy() chain_full.add_columns(list(cols)) #extract subchain chain_size = np.size(chain_full) n = int(chain_size * last_fraction / 100.) # number of samples (last_fraction(%) of total) idx = chain_full.argsort('reduced_chi') self.chain.idxsorted = idx if method_chain == 'chi_min' or method_chain == 'MAP': min_chi_index = self._get_min_chi_index() xmin = np.max([0, min_chi_index - n // 2]) xmax = np.min([chain_size, min_chi_index + n // 2]) sub_chain = chain_full[xmin: xmax] elif method_chain == 'last': sub_chain = chain_full[-n:] xmin = chain_size - n xmax = chain_size elif method_chain == 'chi_sorted': sub_chain = chain_full[idx][:n] sub_idx = idx[:n] xmin = 0 xmax = n else: raise ValueError("Unsupported `method_chain` '%s'" % method_chain) #compute error model maps #@fixme # if self.error_maps: # if method_chain == 'chi_min' or method_chain =='MAP': # tmp_f = np.array(self.chain_flux_map)[min_chi_index - n // 2: min_chi_index + n // 2] # tmp_v = np.array(self.chain_velocity_map)[min_chi_index - n // 2: min_chi_index + n // 2] # tmp_s = np.array(self.chain_dispersion_map)[min_chi_index - n // 2: min_chi_index + n // 2] # elif method_chain == 'last': # tmp_f = np.array(self.chain_flux_map)[-n:] # tmp_v = np.array(self.chain_velocity_map)[-n:] # tmp_s = np.array(self.chain_dispersion_map)[-n:] # elif method_chain == 'chi_sorted': # tmp_f = np.array(self.chain_flux_map)[sub_idx] # tmp_v = np.array(self.chain_velocity_map)[sub_idx] # tmp_s = np.array(self.chain_dispersion_map)[sub_idx] # self.true_flux_map_error = HyperCube( # np.percentile(tmp_f, 50 + percentile/2., axis=0) - # np.percentile(tmp_f, 50 - percentile/2., axis=0) # ) # self.true_velocity_map_error = HyperCube( # np.percentile(tmp_v, 50 + percentile/2., axis=0) - # np.percentile(tmp_v, 50 - percentile/2., axis=0) # ) # self.true_disp_map_error = HyperCube( # np.percentile(tmp_s, 50 + percentile/2., axis=0) - # np.percentile(tmp_s, 50 - percentile/2., axis=0) # ) # Compute best_parameters parameter_names = list(self.model.Parameters().names) if self.method == 'MAP': tmp_chain = np.array(chain_full[parameter_names].as_array().tolist()) best_parameter = tmp_chain[idx[0]] else: tmp_chain = np.array(sub_chain[parameter_names].as_array().tolist()) #convert astropy Table into array best_parameter = np.median(tmp_chain, axis=0) # Compute errors to parameters sigma_parameter = np.std(tmp_chain, axis=0) #handle PA edges at +/-180 #following https://ncss-wpengine.netdna-ssl.com/wp-content/themes/ncss/pdf/Procedures/NCSS/Circular_Data_Analysis.pdf cos1=np.median(sub_chain['cospa']) sin1=np.median(sub_chain['sinpa']) invtan = np.arctan2(sin1,cos1) pa_circular_best = np.degrees(invtan) # over -180;180 #save pa_idx = sub_chain[parameter_names].index_column('pa') best_parameter[pa_idx] = np.where(pa_circular_best>0, pa_circular_best, pa_circular_best+360) r1 = np.sqrt(sub_chain['cospa'].sum()**2+sub_chain['sinpa'].sum()**2) r1 = r1/np.size(sub_chain) pa_circular_std = np.sqrt(-2.*np.log(r1)) cos2=np.median(sub_chain['cos2pa']) sin2=np.median(sub_chain['sin2pa']) #r2 = np.sqrt(sub_chain['cos2pa']**2+sub_chain['sin2pa']**2) #r2 = np.median(r2) invtan2= np.arctan2(sin2,cos2) angle2= np.degrees(invtan2) ## this is?? #pa_circular_dispersion = (1-angle2)/(2*r1**2) #print "pa disp %.3f " % (pa_circular_dispersion) #center chain['pa'] sub_chain_pa = sub_chain['pa'] - best_parameter[pa_idx] #sub_chain_pa = np.where(sub_chain_pa > 180, sub_chain_pa - 360, sub_chain_pa) #sub_chain_pa = np.where(sub_chain_pa < -180, sub_chain_pa + 360, sub_chain_pa) std_pa = np.std(sub_chain_pa) #This is identical to pa_circular_std #print "pa sigma %.3f" % (std_pa) #print "pa stdev %.3f " % (np.degrees(pa_circular_std)) sigma_parameter[pa_idx] = std_pa #add back centering offset sub_chain['pa'] = sub_chain_pa + best_parameter[pa_idx] #keep full set chain_names = deepcopy(parameter_names) chain_names.append('reduced_chi') self.sub_chain = sub_chain[chain_names] self.chain = chain_full[chain_names] self.chain.xmin = xmin self.chain.xmax = xmax # self.sub_chain = sub_chain[parameter_names] #will be used for correlation plots #min in sub_chain: #self.best_chisq = np.min(self.sub_chain['reduced_chi']) #min absolute self.best_chisq = self.chain[idx[0]]['reduced_chi'] #Save self.galaxy = GalaxyParameters.from_ndarray(best_parameter) self.galaxy.stdev = GalaxyParametersError.from_ndarray(sigma_parameter) self.stdev = self.galaxy.stdev # Compute percentiles if percentile is not None: self.logger.info('Setting %2d percentiles ' % (percentile)) error_parameter_upper = np.percentile(self.sub_chain[parameter_names].as_array().tolist(), 50. + percentile/2., axis=0) error_parameter_lower = np.percentile(self.sub_chain[parameter_names].as_array().tolist(), 50. - percentile/2., axis=0) self.galaxy.upper = GalaxyParametersError.from_ndarray(error_parameter_upper) self.galaxy.lower = GalaxyParametersError.from_ndarray(error_parameter_lower) self.galaxy.ICpercentile = percentile # Store galaxy parameters and stdev self.logger.info("self.galaxy : fittest parameters : %s", repr(self.galaxy)) self.logger.info("self.stdev : parameters stdev : %s", str(self.stdev)) return None def compute_stats(self, snr_min=0.02): """ snr_min : float [default = 0.02] minimum snr to compute BIC restricted over pixels with snr > snr_min compute stats (BIC, DIC, AIC) """ dim_data = np.size(self.cube.data) self.chi_at_p = self.compute_chi(self.galaxy) / self.Ndegree self.convolved_cube = self.create_convolved_cube(self.galaxy, self.cube.shape) snr = (self.convolved_cube.data) / np.median(self.variance_cube.data)**0.5 good = np.ones_like(snr) good[snr<snr_min] = 0 dim_good = good.sum() #count only pixels with snr >snr_min and above Nd_good = (dim_good - self.dim_p_free - 1) # degree of freedom # like = -0.5*np.nansum(self.variance_chi)-0.5*self.compute_chi(params) #BIC = -2 * like(theta) self.BIC = self.chi_at_p * self.Ndegree + self.dim_p_free * np.log(dim_data) #AIC = -2 * like + 2 dim_p self.AIC = self.chi_at_p * self.Ndegree + 2 * self.dim_p_free #DIC if self.method != 'chi_sorted': log_Lp = -0.5 * self.sub_chain['reduced_chi'] * self.Ndegree if np.isfinite(log_Lp).all(): pD = 2 * np.var(log_Lp) else: pD = 2 * np.nanvar(log_Lp[np.isfinite(log_Lp)==True]) # P = 2 * (logp_max-np.mean(self.lnp)) #pD = 2 * -0.5 * (self.chi_at_p - np.mean(self.sub_chain['reduced_chi'])) * self.Ndegree #DIC = -2 * like + 2 pd self.DIC = self.chi_at_p * self.Ndegree + 2 * pD else: self.DIC = 0 pD=0 self.stats = Table(np.array(['%.8f' % (self.best_chisq), '%.8f' % (self.chi_at_p), '%.2f' % (self.BIC), self.Ndegree, '%.2f' % (self.AIC), self.dim_p_free, '%.2f' % (pD), '%.2f' % (self.DIC), np.max(snr)] ), \ names=['best_chi2', 'chi2_at_p', 'BIC', 'Ndegree', \ 'AIC', 'k', \ 'pD', 'DIC', 'SNRmax']) if self.mcmc_method is 'multinest': evidence = self.sampler['stats']['global evidence'] self.stats.add_column(evidence*-2,name='log Z') return self.stats
[docs] def create_clean_cube(self, galaxy, shape, final=False): """ Creates a cube containing a clean simulation of a galaxy according to the provided model. galaxy: GalaxyParameters The parameters upon which the simulated galaxy will be built. shape: Tuple of 3 The 3D (z, y, x) shape of the resulting cube. Eg: (21, 21, 21) Returns a HyperspectralCube """ # Create radial velocities and radial dispersions #flux_cube, vz, vz_map, s_map, sig_map, sigz_disk_map, sig_intr = \ # self.model._compute_galaxy_model(galaxy, shape) ## normalize to real flux #flux_map = flux_cube.sum(0) #flux_map = galaxy.flux * flux_map / flux_map.sum() if self.model is None: raise AssertionError(" Model is undefined. Please define model first") modelcube, flux_map, vz_map, s_map = self.model._create_cube(galaxy, shape,\ self.instrument.z_step_kms, zo=galaxy['z']) #@fixme: currently records all calculations.. # if self.error_maps: # self.chain_flux_map.append(flux_map) # self.chain_velocity_map.append(vz_map) # self.chain_dispersion_map.append(s_map) # This is too expensive ! We create Cubes on each iteration... # There are ways to optimize this, as only the last one is used. if final is True: self.true_flux_map = HyperCube(flux_map) self.true_velocity_map = HyperCube(vz_map) self.true_disp_map = HyperCube(s_map) #modelcube = self.model._create_cube(shape, flux_map, vz_map, s_map, # self.instrument.z_step_kms, zo=galaxy.z) #is this used? modelcube.xy_step = self.cube.xy_step modelcube.z_step = self.cube.z_step modelcube.z_central = self.cube.z_central modelcube.z_cunit = self.cube.z_cunit return modelcube
[docs] def create_convolved_cube(self, galaxy, shape): """ Creates a cube containing a convolved simulation of a galaxy according to the provided model. The convolution is done by the instrument you provided upon instantiation of this class. galaxy: GalaxyParameters The parameters upon which the simulated galaxy will be built. shape: Tuple of 3 The 3D (Z, Y, X) shape of the resulting cube. Eg: (21, 21, 21) Returns a HyperspectralCube """ clean_cube = self.create_clean_cube(galaxy, shape) return self.instrument.convolve(clean_cube)
def import_chain(self, filepath, compute_best_params=False, method_chain='last'): """ Imports the chain stored in a .dat file so that you may plot. compute_best_parameters False[default] | True if True will use 'last' method and 60% use best_parameters_from_chain method to customize """ with open(filepath, 'r') as chain_data: self.chain = asciitable.read(chain_data.read(), Reader=asciitable.FixedWidth) self.model.sanitize_chain(self.chain) if compute_best_params is True: self.best_parameters_from_chain(method_chain=method_chain, last_fraction=60, percentile=95) NO_CHAIN_ERROR = "No chain to plot! Run .run_mcmc() or .import_chain() " \ "first."
[docs] def save(self, name, overwrite=False): """ Saves the results of the MCMC to files : - <name>_galaxy_parameters.txt A plain text representation of the parameters of the galaxy. - <name>_galaxy_parameters.dat A table representation of the parameters of the galaxy. - <name>_chain.dat A table representation of the Markov Chain. Each line holds one set of galaxy parameters and its associated reduced chi. - <name>_run_parameters.txt A plain text representation of the run_parameters. - <name>_instrument.txt A plain text representation of the instrument parameters. - <name>_convolved_cube.fits A FITS file containing the PSF-convolved result cube. - <name>_deconvolved_cube.fits A FITS file containing the pre-convolution clean cube. - <name>_residuals_cube.fits A FITS file containing the diff between input data and simulation. - <name>_3Dkernel.fits A FITS file containing the 3D kernel used - <name>_true_flux_map.fits A FITS file containing the true flux map [intrinsic] - <name>_true_vel_map.fits A FITS file containing the true velocity map [intrinsic] - <name>_true_sig_map.fits A FITS file containing the true dispersion map [intrinsic] - <name>_obs_flux_map.fits A FITS file containing the observed flux map [intrinsic] - <name>_obs_vel_map.fits A FITS file containing the observed velocity map [intrinsic] - <name>_obs_sig_map.fits A FITS file containing the observed dispersion map [intrinsic] - <name>_images.pdf/png A PNG image generated by the ``plot_images`` method. Note: the overwrite option is always true for this file. - <name>_mcmc.pdf/png A PNG image generated by the ``plot_mcmc`` method. Note: the overwrite option is always true for this file. - <name>_true_maps.pdf/png A PNG image generated by the ``plot_true_vfield`` method. - <name>_obs_maps.pdf/png The observed maps generated by the ``plot_obs_vfield`` method. - <name>_model.txt The model configuration - <name>_instrument.txt The instrument configuration - <name>_geweke.pdf/png The geweke diagnostics plot - <name>_galaxy_parameters_convergence.dat The convergence of each parameter based on the geweke diagnostics - <name>_corner.pdf/png The corner plot for the MCMC chain. Requires - <name>_stats.dat A ascii file containing the BIC/DIC etc criteria The .dat files can be easily read using astropy.table and its ``ascii_fixedwidth`` format : :: Table.read('example.chain.dat', format='ascii.fixed_width') .. warning:: The generated files are not compressed and may take up a lot of disk space. name: string An absolute or relative name that will be used as prefix for the save files. Eg: 'my_run', or '/home/me/science/my_run'. overwrite: bool When set to true, will OVERWRITE existing files. """ if self.chain is None: raise RuntimeError("Nothing to save! Run .run_mcmc() first.") filename = '%s_galaxy_parameters.txt' % name _save_to_file(filename, self.galaxy.long_info(), overwrite) filename = '%s_galaxy_parameters.dat' % name _save_to_file(filename, self.galaxy.structured_info(), overwrite) filename = '%s_chain.dat' % name _save_to_file(filename, self._chain_as_asciitable(), overwrite) filename = '%s_stats.dat' % name self.stats.write(filename, format='ascii.fixed_width', overwrite=overwrite) filename = '%s_run_parameters.txt' % name _save_to_file(filename, self.__str__(), overwrite) filename = '%s_instrument.txt' % name _save_to_file(filename, self.instrument.__str__(), overwrite) filename = '%s_model.txt' % name _save_to_file(filename, self.model.__str__(), overwrite) filename = '%s_convolved_cube.fits' % name self.convolved_cube.write_to(filename, overwrite) filename = '%s_deconvolved_cube.fits' % name self.deconvolved_cube.write_to(filename, overwrite) filename = '%s_residuals_cube.fits' % name self.residuals_cube.write_to(filename, overwrite) filename = '%s_3Dkernel.fits' % name self.psf3d.write_to(filename, overwrite) filename = '%s_obs_flux_map.fits' % name self.obs_flux_map.write_to(filename, overwrite) filename = '%s_obs_vel_map.fits' % name self.obs_velocity_map.write_to(filename, overwrite) filename = '%s_obs_disp_map.fits' % name self.obs_disp_map.write_to(filename, overwrite) filename = '%s_true_flux_map.fits' % name self.true_flux_map.write_to(filename, overwrite) filename = '%s_true_vel_map.fits' % name self.true_velocity_map.write_to(filename, overwrite) filename = '%s_true_disp_map.fits' % name self.true_disp_map.write_to(filename, overwrite) filename = '%s_rotcurve' % name self.model.plot_vprofile(self.galaxy,chain=self.sub_chain,filename=filename + '.png') self.model.plot_vprofile(self.galaxy,chain=self.sub_chain,filename=filename + '.pdf') #for quick display only filename = '%s_true_maps' % name self.plot_true_vfield(filename + '.png') self.plot_true_vfield(filename + '.pdf') filename = '%s_obs_maps' % name self.plot_obs_vfield(filename + '.png') self.plot_obs_vfield(filename + '.pdf') #@fixme # if self.error_maps: # filename = '%s_true_flux_map_error.fits' % name # self.true_flux_map_error.write_to(filename, overwrite) # filename = '%s_true_vel_map_error.fits' % name # self.true_velocity_map_error.write_to(filename, overwrite) # filename = '%s_true_disp_map_error.fits' % name # self.true_disp_map_error.write_to(filename, overwrite) filename = '%s_images' % name self.plot_images(filename + '.png') self.plot_images(filename + '.pdf') filename = '%s_mcmc' % name self.plot_mcmc(filename + '.png', method='last') self.plot_mcmc(filename + '.pdf', method='last') #Deprecicated # filename = '%s_correlations' % name #self.plot_correlations(filename + '.png') #self.plot_correlations(filename + '.pdf') try: filename = '%s_corner' % name self.corner=self.plot_corner(filename + '.png',nsigma=4) _ = self.plot_corner(filename + '.pdf',nsigma=4) except: self.corner=False self.logger.warning("plot corner failed ") filename = '%s_geweke' % name self.plot_geweke(filename + '.png') self.plot_geweke(filename + '.pdf') filename = '%s_galaxy_parameters_convergence.dat' % name self.convergence.write(filename, format='ascii.fixed_width', overwrite=overwrite) self.logger.info("Saved files in %s" % os.getcwd())
#fixme: to do # def read_files(self, name): def __str__(self): """ Return information about this run in a multiline string. """ return """ galpak_version = %s input_cube = %s Var_cube = %s %s mcmc_method = %s mcmc_sampling = %s iterations = %s random_scale = %s parameters method = %s, chain_fraction: %s, CI percentile: %s, %s min_boundaries = %s max_boundaries = %s known_parameters = %s initial_parameters = %s final_parameters = \n %s best_chi2 = %s median_chi2 = %s BIC = %s acceptance_rate = %s """ % ( self.version, self.cube.filename, self.variance_cube.filename, self.instrument, self.mcmc_method, self.mcmc_sampling, self.max_iterations, self.random_scale, self.method, self.chain_fraction, self.percentile, self.model, self.min_boundaries, self.max_boundaries, self.known_parameters, self.initial_parameters, self.galaxy.structured_info(), self.best_chisq, self.chi_at_p, self.BIC, self.acceptance_rate ) def _chain_as_asciitable(self): """ Exports the chain as an `asciitable`. See the public API `import_chain()` for the reverse operation of loading the chain from an `asciitable` file. """ out = StringStdOut() asciitable.write(self.chain, output=out, Writer=asciitable.FixedWidth, names=self.chain.dtype.names) return out.content def _get_min_chi_index(self): """ Gets the index in the chain of the parameters with the minimal chi. """ if self.chain is None: raise RuntimeError("No chain! Run `run_mcmc()` first.") idx = self.chain.idxsorted[0] return idx ############################################# # # Private methods, modeling # ############################################# def _set_verbose(self, verbose): """ Update the logger's status """ self.logger.disabled=False if verbose is True: #self.logger.setLevel('INFO') if self.model is not None: self.model.logger.disabled = False np.seterr(all='warn') elif verbose is False: #self.logger.setLevel('DEBUG') if self.model is not None: self.model.logger.disabled = True np.seterr(all='ignore') elif verbose is None: self.logger.disabled=True if self.model is not None: self.model.logger.disabled = True else: raise ValueError("verbose should be None | True | False") def _read_params(self, file_config, type): """ sets random scale from config file :return: ModelParameters """ if file_config is not None: if os.path.isfile(file_config): config = configparser.RawConfigParser() config.read(file_config) else: raise ValueError("Read params: Config file %s not present" % (file_config)) else: raise ValueError("Parameter file not defined") if self.config.has_section(type): config = self.config[type] else: self.logger.warning("Read params: Config file has no %s section" % (type)) par = self.model.parameters_class()() for r in list(config.keys()): if r in par.names: par[r] = eval(config[r]) else: self.logger.warning("Config %s has keys not used for this model" % (type)) return par def _init_sampling_scale(self, random_scale, should_guess_flags): dim_d = np.size(self.cube.data) dim_p = len(self.initial_parameters) # Tweak the random amplitude vector (Kp coeff, as pid) # that we can document Model.setup_random_amplitude() adequately random_amplitude = np.sqrt( (self.min_boundaries - self.max_boundaries) ** 2 / 12. ) * dim_p / dim_d # Let the model adjust the random amplitude of the parameter jump self.model.setup_random_amplitude(random_amplitude) # Scale MCMC if needed // allowing vectors if random_scale is not None: if np.size(random_scale) != 1: merge_where_nan(random_scale, np.ones_like(random_amplitude)) random_amplitude = random_amplitude * random_scale # Zero random amplitude where parameters are known random_amplitude = random_amplitude * should_guess_flags return random_amplitude